SMP 2019 表示学习论坛


论坛概况

论坛时间:2019年8月18日 10:10-12:00

论坛形式:专家报告

论坛简介:近年来,图神经网络(GNN)成为网络表示学习和分析的热点研究问题,其特点是将以神经网络为代表深度学习技术用于网络结构的建模与计算。与DeepWalk、LINE和node2vec为代表的图表示学习技术不同,图神经网络能够更好地考虑网络中的节点、边及其附带的标签、属性和文本等信息,能够更好地利用网络结构进行精细建模和深度推理,已经被广泛用于自然语言处理、社会网络分析、推荐系统等领域。本论坛邀请了三位学者介绍图神经网络的最新理论进展和应用探索。

论坛主席:刘知远 清华大学副教授

主席简介:刘知远,清华大学计算机系副教授、博士生导师。主要研究方向为表示学习、知识图谱和社会计算。2011年获得清华大学博士学位,已在ACL、IJCAI、AAAI等人工智能领域的著名国际期刊和会议发表相关论文60余篇,Google Scholar统计引用超过4,700次。承担多项国家自然科学基金。曾获清华大学优秀博士学位论文、中国人工智能学会优秀博士学位论文、清华大学优秀博士后、中文信息学会青年创新奖,入选《麻省理工科技评论》“35岁以下科技创新35人”中国区榜单(MIT TR-35 China)、中国科协青年人才托举工程、中国计算机学会青年学者提升计划。担任中文信息学会青年工作委员会执委、副主任,中文信息学会社会媒体处理专委会委员、秘书长,SCI期刊Frontiers of Computer Science青年编委,ACL、EMNLP、COLING、IJCNLP领域主席。


论坛嘉宾

沈华伟  中国科学院计算技术研究所  研究员


报告主题:图卷积神经网络及其应用

报告摘要:卷积神经网络在处理图像、语音、文本等具有较好空间结构的数据时展现出了很好的优势。然而,卷积神经网络不能直接应用于图(Graph)这类空间结构不规则的数据上。近年来,研究人员开始研究如何将卷积神经网络迁移到图数据上,涌现出ChevNet、MoNet、GraphSAGE、GCN、GAT等一系列方法,在基于图的半监督分类和图表示学习等任务中表现出很好的性能。报告首先梳理和回顾该方向的主要研究进展和发展趋势,进而介绍报告人近期在图卷积神经网络方面的一些研究工作(ICLR’19; IJCAI’19)。

嘉宾简介:沈华伟,博士,中国科学院计算技术研究所研究员,中国中文信息学会社会媒体处理专委会副主任。主要研究方向:社交网络分析、网络数据挖掘。先后获得过CCF优博、中科院优博、首届UCAS-Springer优博、中科院院长特别奖、入选首届中科院青年创新促进会、中科院计算所“学术百星”。2013年在美国东北大学进行学术访问。2015年被评为中国科学院优秀青年促进会会员。获得国家科技进步二等奖、北京市科学技术二等奖、中国电子学会科学技术一等奖、中国中文信息学会钱伟长中文信息处理科学技术一等奖。出版个人专/译著3部,在网络社区发现、信息传播预测、群体行为分析等方面取得了系列研究成果,发表论文100余篇。担任PNAS、IEEE TKDE、ACM TKDD等10余个学术期刊审稿人和KDD、WWW、SIGIR、AAAI、IJCAI、CIKM、WSDM等20余个国际学术会议的程序委员会委员。


魏忠钰  复旦大学  副教授


报告主题:图卷积神经网络在计算金融等交叉学科领域的应用研究

报告摘要:基于图的模型能够描绘特定场景中的实体信息以及实体之间的关系,一直以来被各个学科的学者采用,在相关领域进行不同任务的建模和计算。近年来,图卷积神经网络在大规模图数据上的机器学习任务中有很好的性能表现,这也在交叉学科领域的学者中引起广泛的关注。本次报告将梳理图卷积神经网络在一些交叉学科进行表示学习以及标签预测的工作,并重点介绍报告人近期在计算金融等领域使用图卷积神经网络开展的应用研究工作。

嘉宾简介:魏忠钰,复旦大学大数据学院副教授,香港中文大学博士,美国德州大学达拉斯分校博士后,中文信息学会社交媒体处理专委会通讯委员,中国中文信息学会青年工作委员会委员。主要研究领域为自然语言处理,机器学习和社会媒体处理,专注于自动化文本生成(Text Generation)和论辩挖掘(Argumentation Mining)的研究,在相关领域在国际会议、期刊如CL,ACL,SIGIR,EMNLP,AAAI,IJCAI, Bioinformatics等发表学术论文40余篇。担任多个重要的国际会议或者期刊评审,入选2017年度上海市青年科技英才扬帆计划。


杨成  北京邮电大学  助理教授


报告主题:图神经网络在自然语言处理领域的前沿应用

报告摘要:很多真实世界的应用场景需要处理包含着元素间丰富关系信息的图形式的数据。在例如物理系统建模、化学分子功能预测等领域中,数据都拥有显式的图结构;而在另一些例如文本的非结构数据中,如何从数据中抽取推理并利用如句法树等结构信息,也是相关领域中重要的研究方向。图神经网络可以通过节点间的信息传递(message passing)有效地捕捉结构信息。自该概念提出以来,图神经网络技术已经在自然语言处理、数据挖掘等多个领域得到了广泛的应用。本报告将重点介绍图神经网络技术在自然语言处理领域的前沿应用。

嘉宾简介:杨成,博士,北京邮电大学计算机学院助理教授,2019年7月毕业于清华大学计算机科学与技术系,从事自然语言处理与社会计算相关方向的研究,博士期间在国内外顶级期刊会议上发表多篇论文,Google Scholar累计获得引用近500次,并担任国内外顶级会议包括ACL、EMNLP、SMP等在内的程序委员会成员和期刊的审稿人。